How Technology is Changing the Natural Gas and Oil Industry

As technology continues to advance and develop, industries are learning to adapt and prosper. The oil and gas industry has used technology to change business and operations. As new devices and innovations continue to develop, the industry becomes more efficient and productive. Check out the latest tech trends in the oil and gas industry:

Intelligent Hydrate Platform

One product shaping the industry is a device that manages gas hydrates with real-time intelligence. The device can enable the digital transformation of the oilfield. Because gas hydrates are so imperative to the safety and environment of hydrocarbons in deep and cold offshore locations, it’s important to have such a device to manage it efficiently and effectively. This device is also very cost-effective.

Lift-Scan

It’s important on any oil and gas site to have productive on and offloading. A gaming-changing device set to revolutionize the industry is the lift-scan. The lift-scan is a crane with a crane block camera with the ability to perform deck scanning for more efficient loading. The product will also allow for hands-free communication for the first time and real-time visibility of the operator. Productivity will increase through the use of this device and offer better safety features for offshore sectors.

Polyurethane Foam Flex (PUFF)

When disaster strikes on gas and oil rigs, it can be deadly serious for workers and the environment. If there were to be an oil spill of any kind, PUFF is the most practical, quick, and effective method for adsorbing hydrocarbons. It has the ability to absorb up to about 30 times its weight different kinds of hydrocarbons, such as 10w40 oil, light, and heavy fuel oils. In about two minutes, the material saturates, can be wrung out, and recovers pure hydrocarbons without water. PUFF can also be reused over 100 times, allowing the recovery of about three tonnes of oils. Best of all, it is not harmful to marine or human health.

Humans and Machines

As technology continues to advance in the oil and gas industry, devices and humans are becoming co-workers. Technology isn’t being developed to replace workers, but instead, help to enhance their abilities to perform. In a more digital workplace, oil and gas companies are transforming into greater productive and fast-moving organizations. Technology will improve and revolutionize the industry.

Advertisements

How to Prepare for a Power Grid Failure

Every day, people use electricity without a second thought. From switching on the lights to charging devices, electricity is used to sustain the way of life. Although it is used every day, not many people understand the power it takes or where it all comes from. All of America’s electricity comes from an electric grid that is run from asset owners, manufacturers, service providers, and government officials.

As the electronic infrastructure begins to age, the Office of Electricity (OE) is looking for new ways to transform, improve the ways of electricity, and prepare for a possible power grid failure.

Demand for Modernizing Electricity

For generations, electricity has been conducted one way. The ways of old electricity must come to an end and make way for new innovative technology. There is a higher demand for more efficient and reliable electricity. This way there will be far fewer power outages and other technical difficulties. Time and time again, storms cut out power and leave the public in darkness for sometimes days. By modernizing electricity, this will be a thing of the past. Not only will service be restored faster, but consumers will also be able to manage their usage and costs of electricity with a more modern approach.

Introducing ‘Smart Grid’

In an effort to modernize the power grid, the ‘smart grid’ is now being developed. The smart grid concept uses two-way communication technologies, control systems, and computer processing with sensors known as Phasor Measurement Units (PMUs) that alert operators of grid stability. It also gives consumers the ability to gain information on outages, recovers from outages more quickly through its sensors, has automated feeder switches that reroute power around problems, as well as batteries to keep excess energy to have readily available later in order to meet customer demand.

Benefits of a Modern Power Grid

Over the years, OE has put a considerable amount of investment and research into modernizing technology. Because of their efforts, the public could see a shift in the ways of the power grid. As they create innovative technologies and techniques for more reliable energy, there could be a safer and cheaper way of providing consumers energy. By having a system to analyze and optimize information to properly manage energy, less money will be put in fixing power outages and less electricity will be used irresponsibly.

What Exactly Are Microgrids?

A microgrid is an energy module within a larger power source and can be disconnected from the main grid as needed. Microgrids are being used in various settings to create redundancy, to expand services in underserved locations and to model potential hazards of planned operations.

Key Features of Microgrids

Microgrids share a number characteristics, regardless of their exact configuration.

Energy Storage

Microgrids are hardware independent and their exact configuration can vary based on factors such as location and available resources. The most common type of energy stored is electricity but microgrids can be used to store thermal or mechanical energy if needed.

Electronic Configuration

Microgrids frequently feature assets like solar power or microturbines. The use of variable power sources requires interfaces that can harness and convert energy types.

Most distributed energy sources lose power when they are converted to another type of energy. Microgrids are configured with interfaces that minimize power loss, thus helping to conserve energy and to minimize the cost of providing electricity.

Efficiency Requirements

To achieve maximum efficiency, a microgrid must meet the following functional specifications.

  • Each microgrid must be able to function as a unified entity to properly interface with the main power grid.
  • Each grid must remain within its own power requirements and cannot borrow power from the main grid or from adjoining microgrids.
  • The microgrid must be able to regulate its own voltage and frequency internally.
  • Each unit must be able to deploy resources as needed to maintain energy output requirements.
  • A microgrid must be able to safely connect and reconnect with the main power grid during synchronization operations.

Implementation of Microgrids

Microgrids are often used in water treatment plants, transportation units and health care facilities. Their ability to create redundancy and failover make microgrids an indispensable part of technologies that are employed in mission-critical and time-sensitive operations.

Microgrids provide fault tolerance, bring energy to diverse geographic locations and offer a means to create alternative power sources. These features make microgrids an important solution that offers an opportunity to underserved locations and that promises to promote sustainability for our planet.

The Use of Oil in Big Industry

Crude oil use by the U.S. industrial manufacturers has been consistent since the economic crisis of 2008; though, the usage level is wholly lower than before the economic crisis. In place of crude oil, natural gas increasingly constitutes a greater proportion of total fuel consumption by the U.S. Industrial sector, specifically manufacturing. While natural gas constitutes an increasing proportion of total fuel consumption, crude oil (HGL) represents the largest share of energy sources used as components of manufacturing at almost 50%. Crude oil in particular is commonly used to make plastics and other chemicals. Petroleum products (counted as “other”) account for a third of energy source use as manufacturing components — raw materials in a manufacturing process. Total crude oil and related products constitute a large majority of the quarter of total energy sources first used as a manufacturing component. Regardless of use as manufacturing components or as energy, the largest consumer of energy sources are the chemical, refining, and mining industries. These three industries account for more than half of the total energy consumption by industrial manufacturers. This means there is some competition between using energy sources for energy or for manufacturing processes.

Energy consumption in the manufacturing industry was estimated in 2016 to be about 75% by the USEIA. Natural gas has markedly seen increasing use. Consumption has steadily increased from 2010 to 2014. This reveals increases in natural gas usage as potentially negatively affecting crude oil usage growth trends over the same time period.

Energy generation on-site is a common practice by manufacturers as an alternative to purchasing energy. One prominent method of producing energy on-site is combined heat and power loops. Natural gas and coal constitute a substantial portion of on-site consumed energy at 96%, and renewables constitute 1%. Crude oil does not constitute substantial use for on-site energy generation by manufacturers. This means that crude oil is used for energy production off-site, and energy produced from the crude oil is then distributed to manufacturers in the industrial sector.

Overall, crude oil use by the U.S. Industrial sector has remained steady in the last few decades besides significant decreases in consumption during the 2008 economic crisis. The potential growth of crude oil appears to be stunted by the increasing use of natural gas.

How Blockchain Can Help the Power Grid

How Blockchain Can Help the Power Grid _ Blake Zimmerman Houston

In this article we explore the possibilities on how blockchain can help improve the power grid. To begin with, we must first understand the technology. Blockchain is a way to record and verify transactions without the need of a central entity to maintain or confirm the ledger. The blockchain technology is infamous for its peer-to-peer network of transactions for bitcoin and other cryptocurrencies.

In the past, blockchain technology was being utilized for trading bitcoin. The trading was conducted via a network of distributed computers that would verify and record transactions. Now the blockchain is being looked into for other sectors. For example, blockchain is being taken into consideration for the utilization to cope with complex electric power systems.

In 2017, there’s been some start-up companies that have applied the blockchain technology to the energy sector. The goal of these startups is to trade electricity or even create new ones. Using blockchain will enable peer-to-peer transactions which can bypass a central utility or their energy provider. Another optimistic goal is to use the technology to track production of clean energy. Other proposals have included, making it easier to pay for charging electric vehicles, raise funds to deploy clean energy, manage customer appliances, and others. The exciting part of peer-to-peer transactions is the ability to trade electricity with one another. Essentially, a neighborhood would be able to trade excess energy with one another.

In regard to the grid transactions, there’s a range of other electricity trading applications available that are less essential than a truly decentralized peer-to-peer network. These options are more likely to gain commercial traction and support from utilities and regulatory authorities, because of the capability of utilizing the current electric power system in place.

One of the advantages of blockchain technology for the electric power, is the ability to record and sustain trade attribution. An example would be, renewable electricity and how much emissions would result from its production. Currently, systems are centrally managed, complicated, and prone to errors. However, the benefit of a decentralized blockchain network would provide transparency, accuracy, tracking, and trading. In addition, this would accelerate a clean energy deployment and carbon emissions reduction.

The blockchain networks could also enable private home owners to setup a charging infrastructure and seamlessly sell charging services to electric vehicle owners. Any way you cut it, blockchain offers incredible potential when it comes to enhancing the power grid.

Originally published on April 17, 2019 on BlakeZimmermanHouston.net.